Electron spin relaxation in bilayer graphene
نویسندگان
چکیده
منابع مشابه
Anisotropic spin relaxation in graphene.
Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic ...
متن کاملSpin-polarized electrons in bilayer graphene ribbons
We show that a bilayer graphene ribbon deposited above a ferromagnetic insulator can behave as a spin-filtering device. The ferromagnetic material induces exchange splitting in the graphene ribbon, and due to the Fano antiresonances occurring in the transmission of the graphene ribbon as a function of ribbon length and energy, it is possible to obtain a net spin current. This happens when an an...
متن کاملResonant Scattering by Magnetic Impurities as a Model for Spin Relaxation in Bilayer Graphene.
We propose that the observed spin relaxation in bilayer graphene is due to resonant scattering by magnetic impurities. We analyze a resonant scattering model due to adatoms on both dimer and nondimer sites, finding that only the former give narrow resonances at the charge neutrality point. Opposite to single-layer graphene, the measured spin-relaxation rate in the graphene bilayer increases wit...
متن کاملObservation of long spin-relaxation times in bilayer graphene at room temperature.
We report on the first systematic study of spin transport in bilayer graphene (BLG) as a function of mobility, minimum conductivity, charge density, and temperature. The spin-relaxation time τ(s) scales inversely with the mobility μ of BLG samples both at room temperature (RT) and at low temperature (LT). This indicates the importance of D'yakonov-Perel' spin scattering in BLG. Spin-relaxation ...
متن کاملElectron spin dynamics and electron spin resonance in graphene
A theory of spin relaxation in graphene including intrinsic, Bychkov-Rashba, and ripple spinorbit coupling is presented. We find from spin relaxation data by Tombros et al. (Nature, 448 (2007) 571) that intrinsic spin-orbit coupling dominates over other contributions with a coupling constant of 3.7 meV. Although it is 1–3 orders of magnitude larger than those obtained from first principles, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2013
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.87.205416